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Abstract

Models are an integral part of the discipline of Enterprise
Architecture (EA). To stay relevant to management decision-
making needs, the models need to be based upon suitable
metamodels. These metamodels, in turn, need to be properly
and continuously maintained. While there exists several
methods for metamodel development and maintenance, these
typically focus on internal metamodel qualities and meta-
model engineering processes, rather than on the actual
decision-making needs and their impact on the metamodels
used. The present paper employs techniques from informa-
tion theory and learning classification trees to propose a
method for metamodel management based upon the value
added by entities and attributes to the decision-making
process. This allows for the removal of those metamodel
parts that give the least ”bang for the bucks” in terms of
decision support. The method proposed is illustrated using
real data from an ongoing research project on systems
modifiability.

Index Terms

Classification trees, Enterprise Architecture, metamodel
maintenance, cost-benefit analysis.

1. Introduction

During the last decade, Enterprise Architecture (EA) has
grown into an established approach for management of
information systems in enterprises. EA is model-based, in
the sense that diagrammatic descriptions of the systems and
their environment constitute the core of the approach. EA
models increase the general understanding of an organiza-
tion’s business and information system landscape and aids in
decision making. To ensure semantic rigor, interoperability,
and traceability, EA models are typically based upon meta-
models. While some of the popular EA frameworks propose
a metamodel of their own (e.g. Archimate [1] and the
defense frameworks DoDAF [2] and MODAF [3]), others

focus on development and maintenance processes that are
applicable to many metamodels (e.g. FEA [4] and TOGAF
[5]). However, whether explicit or implicit in architecture
frameworks, metamodels play an important role in all EA
efforts.

Nevertheless, good metamodels are difficult to create and
maintain. On the one hand, a metamodel must be suitable to
the business and IT decision-making processes it is intended
to support. On the other hand, a metamodel must be kept
minimal, lest its usage and maintenance will consume too
much time and resources within an Enterprise Architecture
effort. Thus, there is an inherent trade-off between accuracy
and cost, both in the abstract metamodeling phase [6] and
in the more concrete data collection phase [7]. In essence,
Occam’s razor – that entities must not be multiplied beyond
necessity – is as valid in metamodeling as in other contexts.

This paper proposes the use of methods from the field
of classification tree learning [8] to improve Enterprise
Architecture metamodeling in general, and maintenance and
re-use in particular. At the core of this approach is a
conception of EA as a suitable tool for decision making.
Only by creating metamodels designed for specific man-
agement decision support can subsequent data collection
be kept relevant and cost-efficient. The overall idea, using
classification trees to reduce the size of the metamodel
(and thereby their maintenance cost) while preserving its
predictive power, is illustrated in Figure 1.

The remainder of this paper is structured as follows.
Section 2 contrasts the present contribution with some
related work, followed by an outline of classification tree
learning theory in section 3. Section 4 is the locus of
the main contribution, where a number of applications of
classification trees to Enterprise Architecture is described.
This section also provides detailed examples, based to a
large extent on real data, to clearly illustrate the methods
proposed. A discussion of the strengths and weaknesses of
the proposed method then ensues in section 5, followed by
some concluding remarks in section 6.
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Figure 1. A conceptual sketch of the proposed method,
showing how the predictive decision support of a meta-
model can be preserved, while the costs are reduced by
focusing on the parts of the metamodel with the highest
predictive power.

2. Related work

EA relies on the creation of models to represent the
enterprise. The concepts represented in this modeling effort
are determined by the metamodel used. EA metamodels can
serve several different purposes [9]: (i) to document the EA,
(ii) to plan and design the EA, and (iii) to analyze the EA.
However, regardless of its purpose a metamodel is a trade-
off between the precision it gives and the effort required to
create and manage its instantiations.

A large number of EA metamodels have been proposed
(e.g. [1] [10] [11]) and several frameworks (e.g. [3], [5],
[12]) have been developed that contain metamodels or
guidance on how to develop them. Although several of
these come with descriptions of how to maintain and create
models of an EA, they do not detail how to maintain the
corresponding metamodels.

A method for analysis of metamodels using classification
trees has been presented in [13]. This method applies

classification trees for sensitivity analysis of metamodels
to test how different variables drive a probabilistic model
into different result categories to get a better understanding
of the characteristics of the models. However, no prior
work has been found that applies classification trees for
revising predictive models with the aim of decreasing their
complexity and maintainability.

3. Classification trees

A classification tree is a predictive model. In a tree,
the leaves represent classifications of a target characteristic,
the nodes represent observations of a specimens, and each
branch from a node corresponds to a possible observational
outcome. The tree structure maps observations to classifica-
tions, and can be algorithmically learned from observations.

Most algorithms for learning classification trees employ
a top-down greedy search throughout the space of possible
classification trees, such as the ID3 algorithm [14] used in
this article. The ID3 algorithm is based on selecting the
best attribute to observe at each node in the tree. The best
attribute is defined as the attribute that best separates the
training data according to the target characteristic, using a
statistical property called information gain. [8]

3.1. Entropy and information gain

Before defining information gain, the entropy concept
from information theory needs to be defined. Entropy is
a measure of the uncertainty associated with a random
variable. Given a collection of examples S, where a fraction
pi of the examples takes on each of 1 . . . c different values
of the target characteristic, the entropy of S relative to this
c-categories classification is defined as [8]:

Entropy(S) =
c∑

i=1

−pi log2 pi

With entropy as a measure of the uncertainty, or impurity,
in a collection of training examples, it is now possible
to define a measure of how effective an attribute is for
classifying the training data. This measure, information gain,
can be explained as the reduction in entropy based on
partitioning the examples according to an attribute. Formally,
the information gain Gain(G, A) of an attribute A relative
to a collection S is given by:

Gain(S, A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv)

where V alues(A) is the set of possible values of an attribute
A, and Sv is the subset of S for which it holds that A
has the value v. Note that the first term is the entropy of
the original collection and the second term is the expected
value of the entropy after A has been used to partition



S. Gain(S, A) is thus the expected reduction in entropy
achieved by partitioning according to A. [8]

3.2. The ID3 Algorithm

Based on the gain measure, the following is a slightly
modified ID3 algorithm for classification tree creation [8]:

ID3(Examples, Target attribute,Attributes)
root← empty root node for the tree
if all Examples have the same value c of the
Target Attribute then

return root with label c.
end if
if Attributes = ∅ then

return empty root.
end if
Set A to the attribute of Attributes that has the maximum
gain.
Set the decision attribute for Root← A.
for all possible values vi of A do

Add a tree branch to Root corresponding to the test
A = vi

Set Examplesvi
to the subset of Examples for which

A = vi holds.
if ¬(Examplesvi

= ∅) then
below this branch add
ID3(Examplesvi , Target attribute,Attributes−
{A})

else
return empty root

end if
end for
As compared to the ID3 presented in [8], this version

is modified with respect to the branches for which the
dataset does not contain any cases (i.e. Examplesvi = ∅ or
Attributes = ∅). In the original version, the most frequent
classification in the whole dataset was used. Here, this is
treated as an undefined case, so that the tree faithfully
represents the dataset.

4. Applications to Enterprise Architecture
Metamodeling

This section will show some application examples for
decision trees within the domain of EA. The algorithm
outlined above will be used to create decision trees to
illustrate the applications.

4.1. Metamodel maintenance

Enterprise Architecture is a holistic approach to infor-
mation system management and decision making, where
models constitute the core. These models are based on
metamodels which in turn need to be maintained.

To keep a metamodel aligned with business needs, the
information prescribed by the metamodel must be relevant
to management decisions. When building a new metamodel,
this alignment must be ensured as best possible a priori.
Metamodel maintenance, on the other hand, has the ad-
vantage of hindsight. Historical data can be evaluated a
posteriori with regard to its effectiveness as decision support.
This is where the methods of the previous section enter.

Figure 2 depicts a metamodel designed to support cost
prediction of software modification projects. Table 1 is an
example of the kind of data that might be available to an
enterprise IT decision maker. The data set is taken from
an ongoing research project on modifiability [15], [16]. A
typical management concern here is to avoid costly future
modification projects. To achieve this, the metamodel used
should capture precisely as-is those entities and attributes
that are relevant to the cost assessment of the to-be state
and, ideally, none else.

Table 1 also gives the information gain for each attribute
with regard to the cost, i.e. how useful each attribute is for
predicting the cost – both on a crude {high, low} scale and
on a finer quartiles scale.

As is evident from Table 1, some attributes by far outdo
others in cost predicition. For example, the change diffi-
culties (for components and architectures) have very slight
predictive value with a gain of 0.0074. Indeed, one of the
most costly (No. 6) and the single cheapest (No. 7) projects
both share the same assessment (”Normal”) for this attribute.
Thus, when maintaining a metamodel by the removal of
superfluous entities and attributes, Table 1 provides excellent
candidates for deletion, given the cost assessment objective.

4.2. Process generation and tailoring

Continuing the example, it is natural to imagine that
the decision maker responsible for software development
projects requires not only a metamodel, but also a process
of budget control. Information must be put to use once
gathered, and this use should be structured so as to consider
not only the information gain of single attribute, but also
synergies.

The decision trees introduced in the previous section meet
these criteria. Assume that the overall management concern
is to assess proposed software modification projects by some
criteria, and then deliver a verdict; ”Yes, go ahead” (if
the cost of the project is low enough) or ”No, abort” (if
the cost is high). Figure 3 illustrates a decision tree based
on the data of Table 1, the structure of which is almost
such a decision process description. The generation and
maintenance of management decision processes, given their
goals, can thus be simplified.

Also important is the degree of fit between information
need and decision making requirements. Assume that the
verdict to be delivered is not two- but four-fold; in addition
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Figure 2. A small metamodel for software modification projects.

Table 1. Costs, attributes, attribute gains for ten software modification projects.

Entities Developer
Team

Component
Docu-
menta-
tion

Component
Change
Environ-
ment

Technical
Changes
to Com-
ponents

Architect
Team

Architectural
Docu-
menta-
tion

Technical
Changes
to Archi-
tecture

Change
Organi-
zations

Change
Man-
agement
Process

Change
Project

Attributes Expertise Quality Quality
of Tools

Change
Difficulty

Expertise Quality Change
Difficulty

Number
of Devel-
opers

Maturity Cost

Project 1 Low Medium Low Difficult High Low Difficult Many Mature 20000
Project 2 Low Medium Low Normal High Medium Normal Medium Mature 14000
Project 3 Medium High High Normal Medium Medium Normal Few Mature 2300
Project 4 High Medium Medium Normal High Medium Normal Few Mature 9100
Project 5 Medium High High Normal Medium High Normal Few Mature 3000
Project 6 Low Medium High Normal High Low Normal Few Not mature 20000
Project 7 High Medium Low Normal High Medium Normal Few Mature 1200
Project 8 High Low Low Difficult High Low Difficult Few Mature 6228
Project 9 High High Medium Normal Medium Medium Normal Medium Mature 2440
Project 10 Medium Medium Medium Normal Medium Medium Normal Few Very mature 6266
Gain, medians 0.6464 0.4200 0.0200 0.0074 0.4200 0.1445 0.0074 0.1668 0.2074
Gain, quartiles 0.8955 0.8200 0.6200 0.1710 0.2955 0.5445 0.1710 0.4058 0.4464
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project assessment.

Developer Team.Expertise

Component 

Documentation.

Quality

High

Component Change 

Environment.Quality of Tools

Medium Low

High

Component 

Documentation.

Quality

High

Q3

Medium

Medium

Architectural 

Documentation.

Quality

Q2

Low

Q2 Q2

Q3 Q1

Q1

Medium Low
High Medium

Q4

Figure 4. A decision tree for software modification
project assessment, grading costs into quartiles.

to the ”Yes” and ”No” we add the alternatives ”Yes, but with
some (cost reducing) changes” and ”No, unless major revi-
sions occur”. Such additional decision alternatives introduce
new requirements on the process and the metamodel. In the
example, these requirements can be accommodated by re-
classifying the projects into four cost quartiles, Q1, . . . , Q4,
(where Q1 denotes the lowest costs and Q4 the highest), and
identify each quartile with a decision, i.e. Q1 → ”Yes, go
ahead”, Q2 → ”Yes, but with some changes”, etc.

Figure 4 illustrates a decision tree based on these new
requirements. It is interesting to note the differences, as
compared to the tree of Figure 3. In particular, there is no
model monotonicity, e.g. a high level of developer expertise
might yield both high and low project costs. Furthermore,
there is not necessarily any clear causality in the models:
good developers might get the hardest projects and thus the

highest costs, while their peers of less expertise get simpler
projects and thus lower costs. Clearly, this does not entail
that high cost project can be converted into low cost ones
by using less experienced developers. Thus, the classification
trees capture correlations that can be used for prediction, but
do not in general yield causal relations suitable to act upon.

Three lessons can be learned from this. First, it serves
to illustrate the importance of alignment between decision
making requirements and metamodels. Second, it illustrates
the importance of context for the relevance of different
attributes – information has value not in its own right, but
only in a setting. Third, it illustrates the importance of
domain knowledge and sanity check when acting on the
information.

4.3. Data collection prioritization in large projects

Another application is the optimal use of information
when embarking on a large architecture project following a
smaller pre-study. In data collection efforts on hundreds or
even thousands of IT systems, it is rarely feasible to collect
all the data prescribed by a large metamodel. However, if in a
smaller pre-study all data is collected for a limited number
of systems, the principles outlined above can be used to
prioritize before the main data collection phase.

4.4. Cost-benefit trade-offs in modeling

Modeling of large systems may become prohibitively
expensive as models grow large. While the actual costs
are sometimes unknown, e.g. when embarking on a large
data collection project with a fresh metamodel, they are
sometimes known. In the metamodel maintenance situa-
tion referred to above, financial records or time-tracking
of employees might allow the cost of data collection to
be discerned. Given such information, it seems prudent to
weigh the benefit (information gain) of an attribute against
its cost.

There are several ways to incorporate considerations of
cost into classification tree learning described in the liter-
ature. In the following, we adhere to [17] and replace the
standard information gain with the measure

Gain2(S, A)
Cost(A)

Figure 5 illustrates the impact on the quartile classification
tree of changing the collection costs for the attributes. For
the sake of the example, the costs in Figure 5 were obtained
as random normally distributed numbers with the cost of
the high information gain attribute expertise of the developer
team multiplied by 10 so it would not be the first choice of
the algorithm.

Figure 6 shows a refined metamodel with data collec-
tion costs accounted for. Four attributes from the original
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Figure 5. A decision tree using attributes weighted by
the attribute data collection costs in the table.

metamodel have been removed, as they are not present in
the classification tree (depicted in Figure 5). Furthermore,
in three cases, the entities holding the attributes, as well as
their relationships, could be wholly removed. This example
illustrates not only how high costs impact the suitability
of a certain metamodel, but also how knowledge of this
impact can be used to alleviate the situation. The exact rules
for metamodel pruning, given the information gain of its
attributes, need to be specified depending on the specific
characteristics and purpose of the metamodel.

4.5. Efficient discretization of continuous variables

So far, we have taken for granted that attributes are
measured on discrete, not continuous, scales. Such scales can
enable lucid overview of attributes and lower data collection
cost. The scales considered so far are all ordinal scales,
i.e. there is an order between the points on the scale (e.g. first
low, then medium, then high), but no guarantee that the
scales is equally spaced (so that the difference between
medium and low is the same as that between high and
medium). There are several reasons for the use of ordinal
scales. Some attribute scales, such as the maturity of the
change management process, are largely determined by their
measurement or assessment procedure. Furthermore, mea-
sures of process maturity are usually derived from numerous
lower-level indicators. Other attribute scales are derived from
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Figure 6. A refined, smaller, version of the metamodel
in Figure 2.

expert assessments, where scales are unavoidably coarse.
When experts assess the difficulty of technical changes to an
architecture, it is difficult to imagine scales better than {easy,
normal, difficult}. However, there are also cases where a
discrete ordinal scale is obviously not the original data
format. In our example, the number of developers springs to
mind. While it may be appropriate to discretize this number,
it is not clear how to best draw the lines between few,
medium, and many developers.

The information gain measure offers a solution, tying
the discrete scales to the decision at hand. By calculating
the information gain associated with different break-points,
we can pick the discretization that offers the best decision-
making support. The theorem proved in [18], stating that
optimal cut points are always to be found on boundaries
between two classes (two quartiles in our example), delimits
the search. This means that if there is no change of quartile
when going from an example e1 with n1 developers to
another example e2 with n2 developers, then there is no
use looking for an optimal cut point in the interval [e1, e2].

Figure 7 illustrates the search for an optimal discretization
of the number of developers. Since we are looking for a
{few, medium, many} scale, two cut points are required.
These are illustrated on the axes of the graph, thus letting
each point in the plane correspond to a discretization. Since
the order of the cut points is immaterial, the graph is
symmetric and we look only at half of it. Also, since it
is a waste to let the two cut points coincide, the diagonal
has been excluded from the graph. The best discretization
is readily read from the graph, being cut points between 7
and 8, and 14 and 15, respectively.

Table 2 gives the information gain for the old (second
column) and new (third column) discretizations. Evidently,
the new discretization is a considerable improvement. The
intuitive explanation is that the old scale is poorly used,
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Table 2. Attribute gains for different discretizations.

Number 0 ≤ few ≤ 15 0 ≤ few ≤ 7 Cost
of 16 ≤ medium ≤ 40 8 ≤ medium ≤ 14 of
Developers 41 ≤ many 15 ≤ many change
60 Many Many Q4
35 Medium Many Q4
6 Few Few Q1
9 Few Medium Q3
4 Few Few Q2
10 Few Medium Q4
2 Few Few Q1
5 Few Few Q2
18 Medium Many Q2
10 Few Medium Q3
Gain,
medians

0.1668 0.4200

Gain,
quartiles

0.4058 1.0200

having seven specimens classed as low, two as medium and
just a single one as high. The new scale is more evenly
used. The radical improvement in information gain makes
it is reasonable to assume that the number of developers
attribute, rescaled, will impact a classification tree using
this data. Figure 8 illustrates this, showing that the number
of developers attribute now outperforms the developer team
expertise attribute, previously the favored root of the tree.

By this method, metamodel attribute scales and data types
can be recalibrated to provide optimal decision support.

5. Discussion

There are several issues with the method described in the
previous section that require further discussion. The aim of
this section is to discuss some such strengths and weaknesses
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Figure 8. A decision tree for software modification
project assessment, grading costs into quartiles using
an improved discretization of the number of developers.

of the proposed method.

5.1. Making use of incomplete data

In the examples discussed so far, we have used uniform
and complete data sets, i.e. where the attributes are the same
and no data is missing in any example. In reality, these
conditions are rarely fulfilled. As enterprise metamodels
are maintained and updated, old data no longer fits newer.
Furthermore, due to lack of time or manpower, immature
processes, or simple mistakes, data sets may well contain
attributes that have received no values. Nevertheless, IT
decisions makers want to make use of such data, since even
though it is defective, it still has some predictive value.

Fortunately, the classification tree techniques we have
used in the previous section are adjustable to cope with
this situation. One strategy [8] is to simply fill use the
most common attribute value whenever such a value is
missing. More elaborate versions assign the most common
value among examples with a common classification [19],
or assign probabilities rather than the most common value,
as in the C 4.5 algorithm [20].

5.2. Overfitting and the size of data sets

Overfitting is a problem prevalent in machine learning.
In essence, the learning process risks going beyond useful
generalization and instead learns the peculiarities of the
training set. The standard method employed to handle this
is to partition the available data into one learning set and
another, disjoint, validation set. The tree is then created using
the training set, whereafter the validation set is used for



checking the validity of the tree. A final tree can then be
created by pruning the tree after overfitting [8].

In this article, we make no use of these techniques. The
reason is simple – our real world example is too small for
them to be useful. With larger data sets, the methods cited
above could and should be employed. However, due to the
prevalence of small data sets in the world of Enterprise
Architecture, a word of caution is appropriate. The presented
method has to be applied with caution, as there is no built-
in sanity check. Very deep trees based on very small data
sets are prone to be erroneous. Sometimes, just looking at
information gains might be the best one can do.

6. Conclusions

This paper has shown how techniques from informa-
tion theory and learning classification trees can be em-
ployed to maintain and manage metamodels for Enterprise
Architecture-based decision making. The problem is that
metamodels tend to grow larger and more difficult to manage
as time goes by. The solution is to evaluate metamodel
entities and attributes in relation to the decisions that the
metamodel is designed to support. Only those parts of the
metamodel that provide good ”bang for the bucks” decision
support should be kept.

In this paper, a method for such metamodel management
has been elaborated, and a number of closely related ap-
plications have been illustrated and validated by examples
based on real data. Furthermore, a thorough discussion of
the applicability and limitations of the method has been
supplied.

More generally speaking, we have described how a formal
analysis method, well established in its own right, can be
used to achieve greater analytical capabilities within the
Enterprise Architecture discipline. Indeed, there exists a lot
of engineering methods, thoroughly explored and validated
in different settings, that the cross-disciplinary area of En-
terprise Architecture potentially could benefit from using.
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